Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394060

RESUMO

BACKGROUND: Bacterial pneumonia and sepsis are both common causes of end-organ dysfunction, especially in immunocompromised and critically ill patients. Pre-clinical data demonstrate that bacterial pneumonia and sepsis elicit the production of cytotoxic tau and amyloids from pulmonary endothelial cells, which cause lung and brain injury in naïve animal subjects, independent of the primary infection. The contribution of infection-elicited cytotoxic tau and amyloids to end-organ dysfunction has not been examined in the clinical setting. We hypothesized that cytotoxic tau and amyloids are present in the bronchoalveolar lavage fluid of critically ill patients with bacterial pneumonia and that these tau/amyloids are associated with end-organ dysfunction. METHODS: Bacterial culture-positive and culture-negative mechanically ventilated patients were recruited into a prospective, exploratory observational study. Levels of tau and Aß42 in, and cytotoxicity of, the bronchoalveolar lavage fluid were measured. Cytotoxic tau and amyloid concentrations were examined in comparison with patient clinical characteristics, including measures of end-organ dysfunction. RESULTS: Tau and Aß42 were increased in culture-positive patients (n = 49) compared to culture-negative patients (n = 50), independent of the causative bacterial organism. The mean age of patients was 52.1 ± 16.72 years old in the culture-positive group and 52.78 ± 18.18 years old in the culture-negative group. Males comprised 65.3% of the culture-positive group and 56% of the culture-negative group. Caucasian culture-positive patients had increased tau, boiled tau, and Aß42 compared to both Caucasian and minority culture-negative patients. The increase in cytotoxins was most evident in males of all ages, and their presence was associated with end-organ dysfunction. CONCLUSIONS: Bacterial infection promotes the generation of cytotoxic tau and Aß42 within the lung, and these cytotoxins contribute to end-organ dysfunction among critically ill patients. This work illuminates an unappreciated mechanism of injury in critical illness.


Assuntos
Pneumonia Bacteriana , Sepse , Masculino , Animais , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Prospectivos , Estado Terminal , Células Endoteliais , Insuficiência de Múltiplos Órgãos , Irrigação Terapêutica , Líquido da Lavagem Broncoalveolar/microbiologia , Pneumonia Bacteriana/microbiologia , Amiloide , Citotoxinas , Peptídeos beta-Amiloides , Proteínas tau
3.
FASEB J ; 31(7): 2785-2796, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28314768

RESUMO

Patients who recover from pneumonia subsequently have elevated rates of death after hospital discharge as a result of secondary organ damage, the causes of which are unknown. We used the bacterium Pseudomonas aeruginosa, a common cause of hospital-acquired pneumonia, as a model for investigating this phenomenon. We show that infection of pulmonary endothelial cells by P. aeruginosa induces production and release of a cytotoxic amyloid molecule with prion characteristics, including resistance to various nucleases and proteases. This cytotoxin was self-propagating, was neutralized by anti-amyloid Abs, and induced death of endothelial cells and neurons. Moreover, the cytotoxin induced edema in isolated lungs. Endothelial cells and isolated lungs were protected from cytotoxin-induced death by stimulation of signal transduction pathways that are linked to prion protein. Analysis of bronchoalveolar lavage fluid collected from human patients with P. aeruginosa pneumonia demonstrated cytotoxic activity, and lavage fluid contained amyloid molecules, including oligomeric τ and Aß. Demonstration of long-lived cytotoxic agents after Pseudomonas infection may establish a molecular link to the high rates of death as a result of end-organ damage in the months after recovery from pneumonia, and modulation of signal transduction pathways that have been linked to prion protein may provide a mechanism for intervention.-Balczon, R., Morrow, K. A., Zhou, C., Edmonds, B., Alexeyev, M., Pittet, J.-F., Wagener, B. M., Moser, S. A., Leavesley, S., Zha, X., Frank, D. W., Stevens, T. Pseudomonas aeruginosa infection liberates transmissible, cytotoxic prion amyloids.


Assuntos
Citotoxinas/metabolismo , Proteínas Priônicas/toxicidade , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Animais , Edema , Células Endoteliais/microbiologia , Humanos , Camundongos , Neurônios/microbiologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Proteínas Priônicas/metabolismo , Infecções por Pseudomonas/patologia , Ratos
4.
Handb Exp Pharmacol ; 238: 67-85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28181005

RESUMO

Exoenzyme Y (ExoY) was identified as a component of the Pseudomonas aeruginosa type 3 secretion system secretome in 1998. It is a common contributor to the arsenal of type 3 secretion system effectors, as it is present in approximately 90% of Pseudomonas isolates. ExoY has adenylyl cyclase activity that is dependent upon its association with a host cell cofactor. However, recent evidence indicates that ExoY is not just an adenylyl cyclase; rather, it is a promiscuous cyclase capable of generating purine and pyrimidine cyclic nucleotide monophosphates. ExoY's enzymatic activity causes a characteristic rounding of mammalian cells, due to microtubule breakdown. In endothelium, this cell rounding disrupts cell-to-cell junctions, leading to loss of barrier integrity and an increase in tissue edema. Microtubule breakdown seems to depend upon tau phosphorylation, where the elevation of cyclic nucleotide monophosphates activates protein kinases A and G and causes phosphorylation of endothelial microtubule associated protein tau. Phosphorylation is a stimulus for tau release from microtubules, leading to microtubule instability. Phosphorylated tau accumulates inside endothelium as a high molecular weight, oligomeric form, and is then released from the cell. Extracellular high molecular weight tau causes a transmissible cytotoxicity that significantly hinders cellular repair following infection. Thus, ExoY may contribute to bacterial virulence in at least two ways; first, by microtubule breakdown leading to loss of endothelial cell barrier integrity, and second, by promoting release of a high molecular weight tau cytotoxin that impairs cellular recovery following infection.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Infecções por Pseudomonas/enzimologia , Pseudomonas aeruginosa/enzimologia , Adenilil Ciclases/metabolismo , Animais , Permeabilidade Capilar , Citoesqueleto/enzimologia , Citoesqueleto/microbiologia , Células Endoteliais/enzimologia , Células Endoteliais/microbiologia , Guanilato Ciclase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Pseudomonas aeruginosa/patogenicidade , Sistemas do Segundo Mensageiro , Virulência , Proteínas tau/metabolismo
5.
Oncotarget ; 7(14): 17991-8005, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26908451

RESUMO

The expression of the tumor suppressor Merlin is compromised in nervous system malignancies due to genomic aberrations. We demonstrated for the first time, that in breast cancer, Merlin protein expression is lost due to proteasome-mediated elimination. Immunohistochemical analysis of tumor tissues from patients with metastatic breast cancer revealed characteristically reduced Merlin expression. Importantly, we identified a functional role for Merlin in impeding breast tumor xenograft growth and reducing invasive characteristics. We sought to determine a possible mechanism by which Merlin accomplishes this reduction in malignant activity. We observed that breast and pancreatic cancer cells with loss of Merlin show an aberrant increase in the activity of ß-catenin concomitant with nuclear localization of ß-catenin. We discovered that Merlin physically interacts with ß-catenin, alters the sub-cellular localization of ß-catenin, and significantly reduces the protein levels of ß-catenin by targeting it for degradation through the upregulation of Axin1. Consequently, restoration of Merlin inhibited ß-catenin-mediated transcriptional activity in breast and pancreatic cancer cells. We also present evidence that loss of Merlin sensitizes tumor cells to inhibition by compounds that target ß-catenin-mediated activity. Thus, this study provides compelling evidence that Merlin reduces the malignant activity of pancreatic and breast cancer, in part by suppressing the Wnt/ß-catenin pathway. Given the potent role of Wnt/ß-catenin signaling in breast and pancreatic cancer and the flurry of activity to test ß-catenin inhibitors in the clinic, our findings are opportune and provide evidence for Merlin in restraining aberrant activation of Wnt/ß-catenin signaling.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neurofibromina 2/deficiência , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Via de Sinalização Wnt/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Células MCF-7 , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Neoplasias Pancreáticas/patologia , Ativação Transcricional , Transfecção , Regulação para Cima , beta Catenina/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 310(4): L337-53, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637633

RESUMO

We tested the hypothesis that Pseudomonas aeruginosa type 3 secretion system effectors exoenzymes Y and U (ExoY and ExoU) induce release of a high-molecular-weight endothelial tau, causing transmissible cell injury characteristic of an infectious proteinopathy. Both the bacterial delivery of ExoY and ExoU and the conditional expression of an activity-attenuated ExoU induced time-dependent pulmonary microvascular endothelial cell gap formation that was paralleled by the loss of intracellular tau and the concomitant appearance of high-molecular-weight extracellular tau. Transfer of the high-molecular-weight tau in filtered supernatant to naïve endothelial cells resulted in intracellular accumulation of tau clusters, which was accompanied by cell injury, interendothelial gap formation, decreased endothelial network stability in Matrigel, and increased lung permeability. Tau oligomer monoclonal antibodies captured monomeric tau from filtered supernatant but did not retrieve higher-molecular-weight endothelial tau and did not rescue the injurious effects of tau. Enrichment and transfer of high-molecular-weight tau to naïve cells was sufficient to cause injury. Thus we provide the first evidence for a pathophysiological stimulus that induces release and transmissibility of high-molecular-weight endothelial tau characteristic of an endothelial proteinopathy.


Assuntos
Células Endoteliais/microbiologia , Infecções por Pseudomonas/transmissão , Pseudomonas aeruginosa/enzimologia , Animais , AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Pulmão/enzimologia , Pulmão/microbiologia , Microvasos/metabolismo , Infecções por Pseudomonas/microbiologia , Ratos
7.
Am J Physiol Lung Cell Mol Physiol ; 306(10): L915-24, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24705722

RESUMO

Exoenzyme Y (ExoY) is a Pseudomonas aeruginosa toxin that is introduced into host cells through the type 3 secretion system (T3SS). Once inside the host cell cytoplasm, ExoY generates cyclic nucleotides that cause tau phosphorylation and microtubule breakdown. Microtubule breakdown causes interendothelial cell gap formation and tissue edema. Although ExoY transiently induces interendothelial cell gap formation, it remains unclear whether ExoY prevents repair of the endothelial cell barrier. Here, we test the hypothesis that ExoY intoxication impairs recovery of the endothelial cell barrier following gap formation, decreasing migration, proliferation, and lung repair. Pulmonary microvascular endothelial cells (PMVECs) were infected with P. aeruginosa strains for 6 h, including one possessing an active ExoY (PA103 exoUexoT::Tc pUCPexoY; ExoY(+)), one with an inactive ExoY (PA103ΔexoUexoT::Tc pUCPexoY(K81M); ExoY(K81M)), and one that lacks PcrV required for a functional T3SS (ΔPcrV). ExoY(+) induced interendothelial cell gaps, whereas ExoY(K81M) and ΔPcrV did not promote gap formation. Following gap formation, bacteria were removed and endothelial cell repair was examined. PMVECs were unable to repair gaps even 3-5 days after infection. Serum-stimulated growth was greatly diminished following ExoY intoxication. Intratracheal inoculation of ExoY(+) and ExoY(K81M) caused severe pneumonia and acute lung injury. However, whereas the pulmonary endothelial cell barrier was functionally improved 1 wk following ExoY(K81M) infection, pulmonary endothelium was unable to restrict the hyperpermeability response to elevated hydrostatic pressure following ExoY(+) infection. In conclusion, ExoY is an edema factor that chronically impairs endothelial cell barrier integrity following lung injury.


Assuntos
Proteínas de Bactérias/fisiologia , Proliferação de Células , Células Endoteliais/microbiologia , Glucosiltransferases/fisiologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/enzimologia , Animais , AMP Cíclico/metabolismo , Edema/imunologia , Edema/microbiologia , Células Endoteliais/imunologia , Células Endoteliais/fisiologia , Interações Hospedeiro-Patógeno , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/microbiologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/microbiologia , Masculino , Microvasos/patologia , Microvasos/fisiopatologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Ratos
8.
Biochim Biophys Acta ; 1826(2): 400-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22750751

RESUMO

Neurofibromatosis type 2 (NF2), characterized by tumors of the nervous system, is a result of functional loss of the NF2 gene. The NF2 gene encodes Merlin (moesin-ezrin-radixin-like protein), an ERM (Ezrin, Radixin, Moesin) protein family member. Merlin functions as a tumor suppressor through impacting mechanisms related to proliferation, apoptosis, survival, motility, adhesion, and invasion. Several studies have summarized the tumor intrinsic mutations in Merlin. Given the fact that tumor cells are not in isolation, but rather in an intricate, mutually sustaining synergy with their surrounding stroma, the dialog between the tumor cells and the stroma can potentially impact the molecular homeostasis and promote evolution of the malignant phenotype. This review summarizes the epigenetic modifications, transcript stability, and post-translational modifications that impact Merlin. We have reviewed the role of extrinsic factors originating from the tumor milieu that influence the availability of Merlin inside the cell. Information regarding Merlin regulation could lead to novel therapeutics by stabilizing Merlin protein in tumors that have reduced Merlin protein expression without displaying any NF2 genetic alterations.


Assuntos
Neurofibromina 2/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Epigênese Genética , Humanos , Neurofibromina 2/química , Proteínas Proto-Oncogênicas c-akt/fisiologia , Estabilidade de RNA
9.
J Biol Chem ; 286(46): 40376-85, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21965655

RESUMO

Unlike malignancies of the nervous system, there have been no mutations identified in Merlin in breast cancer. As such, the role of the tumor suppressor, Merlin, has not been investigated in breast cancer. We assessed Merlin expression in breast cancer tissues by immunohistochemistry and by real-time PCR. The expression of Merlin protein (assessed immunohistochemically) was significantly decreased in breast cancer tissues (although the transcript levels were comparable) simultaneous with increased expression of the tumor-promoting protein, osteopontin (OPN). We further demonstrate that the loss of Merlin in breast cancer is brought about, in part, due to OPN-initiated Akt-mediated phosphorylation of Merlin leading to its proteasomal degradation. Restoring expression of Merlin resulted in reduced malignant attributes of breast cancer, characterized by reduced invasion, migration, motility, and impeded tumor (xenograft) growth in immunocompromised mice. The possibility of developing a model using the relationship between OPN and Merlin was tested with a logistic regression model applied to immunohistochemistry data. This identified consistent loss of immunohistochemical expression of Merlin in breast tumor tissues. Thus, we demonstrate for the first time a role for Merlin in impeding breast malignancy, identify a novel mechanism for the loss of Merlin protein in breast cancer, and have developed a discriminatory model using Merlin and OPN expression in breast tumor tissues.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Neurofibromina 2/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Neurofibromina 2/genética , Osteopontina/genética , Osteopontina/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...